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Abstract—First, the influence of the unsteady forces (the pressure gradient, the virtual mass effect and
the Basset history term) on the complex velocities ratio of the fluid and of the dispersed phases has been
studied. To this end, the particle momentum equation is linearized for small oscillating motion of the two
phases which are at rest in the reference state. It is shown that the unsteady terms are of great importance
when the coefficient y, mass density of the particle divided by the mass density of the fluid, becomes small.
A particular study of the Basset history term is also investigated. Then, a two fluids theory, including
viscous and thermal losses effects, is developed for calculating the velocity and the damping of the sound
propagating in a two-phase flow. As the former treatment, the classical equations of the multiphase flows
are linearized and the dispersion equation of the acoustical wave is obtained. Several tendencies and the
special part played by the Basset history term in acoustics are pointed out.
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INTRODUCTION

The unsteady terms in the expression of particles drag are often neglected in the equations of
moving multiphase flows. When the flow motion is well established, the main force acting on a
particle is the viscous Stokes drag whose expression is well-known for small Reynolds numbers.
The Reynolds number is defined by: Re = dV,, /v where, d is the particle diameter, V,,, is the relative
velocity between the fluid and the sphere far away from the particle and v is the fluid kinematic
viscosity. In this theory the particles are taken to be rigid and spherical and there is no interaction
between them (Germain 1962; Fortier 1967). The flow is irrotational and the surface tension is
supposed to have no influence. With these assumptions, the particle acceleration is proportional
to the local relative average velocity between the fluid and the particle and a kinetic relaxation time
appears (Kuentzmann 1973). This relaxation time 7, depends on the coefficient of Stokes formula.
It is also used in the expression of the entropy production rate for the flow when the Onsager
linearized theory is applied (Prud’homme 1988).

Spherical rigid particles are not necessarily solid, some liquid droplets can remain spherical in
hard conditions when their diameter and their capillarity number are small enough (Feuillebois
1991). If the particles are not of spherical shape, it is necessary to introduce a shape factor.

In Stokes flows, the only modification of 7, may not be sufficient to take into account possible
unsteady effects. The problem is no longer linear and other terms must be added to the Stokes drag.
If the particle is rigid and if it does not rotate, these terms are: the pressure gradient, the virtual
mass effect, the weight and the Basset history term. If the particles concentration is small and if
the particles do not modify the velocity of the fluid, the two first terms are easy to evaluate. The
Basset term is much more difficult to derive in the general cases (Rusanov 1953; Fortier 1967).
Nevertheless, in a linear (small amplitude) oscillatory situation, the Basset integral easily reduces
to a simple form (Landau & Lifshitz 1971). Experimental studies and more recently direct numerical
simulations give a proper understanding of the different forces influences (Rivero er al. 1991).

The net force in Stokes flow (Re < 1) is different from the net force at higher Reynolds numbers.
Indeed, some coefficients must be introduced such as: the Reynolds number and the acceleration
number (Clift et al. 1978; Rivero 1991).
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In the first part of this paper, we study the respective influences of the previous terms on the
ratio particle velocity/fluid velocity. The motion is oscillatory, time dependent and eventually space
dependent, its amplitude being small (p,./p, €1, P 1S the maximum pressure perturbation
and p, is the pressure in the reference state). The linearization of the particle dynamical equation
leads to the expression of the complex velocities ratio for the particle and the fluid as a function
of the product wt (w is the angular frequency, t the time defined by 7y /¢ and y the mass density
ratio p,/p,). The study in the complex plane shows that the ratio of the velocities moduli is
sometimes very different from unity and the phase-lag between the two velocities is not always
negligible.

In the second part, a theory is developed, on the base of a two fluids model, for studying the
influences of the different forces on the propagation and the damping of sound in two-phase flows.
In elastic media (water, air, etc.), the sound propagates nearly without damping. That is no longer
the case for porous, soft or multiphase media (Matras 1972). Indeed, the exchanges of momentum
and energy between the two phases yield energy loss effects.

The propagation of sound has been investigated by many authors. A part of the published papers
is relating to sound propagation in bubbly flows (Hinze 1975; Clift er al. 1978; Biesheuvel &
Wijngaarden 1984; Wijngaarden & Kapteyn 1990; Sangani et al. 1991). These differ in their
approach compared to the present paper which is relating to condensed particles in a fluid phase.
Gregor & Rumpf (1975), using mass and momentum balances, show that the velocity of sound
depends on the relative velocity between the two phases, on the ratio of densities, on the particles
concentration, on the particle diameter, on the drag coefficient and on the frequency of sound.
Some authors express the sound velocity using a thermodynamic method (Michaelides & Zissis
1983). Allegra & Hawley (1972) introduce wave equations (compressional, thermal and viscous
waves). Some studies use a method of linearization with introducing a complex wave-number
(Atkinson & Kytomaa 1992), that is the kind of approach which is chosen here.

In this second part, the considered fluid is a gas. The compressibility effects and the thermal
exchanges are no more negligible. These thermal exchanges are characterized by a thermal
relaxation time called 7,. We use the former treatment but now the small oscillating perturbations
are explicitly time and space dependent. The model requires the wave-length to be large compared
to the particle radius:; r, <€ 4. Indeed, if this inequality is not satisfied, many others phenomena
occur such as the wave reflection on the particle. Furthermore, the physical properties would
not be uniform at the surface of the sphere. Let us introduce the acoustical Reynolds number:
Rec =cr,/v. As ¢ =f 4 (c is the sound speed and fis the frequency of the acoustical wave), the
condition r, € A, may be written: tw <€ Rec.

Throughout the calculations, the following general assumptions are made. The studied medium
consists of a two-phase suspension: a fluid phase (newtonian fluid) and a dispersed phase. The
subscripts “‘g” and “p” stand respectively for the fluid and the particles. The particles distribution
is supposed to be statically homogeneous so that the isotropy condition is satisfied. The gas volumic
fraction, called ¢, is nearly equal to unity in the case of a suspension. The particles occupy a small
volume in the mixture, hence the interactions terms between them are overlooked (distance effects,
collisions). We admit that a statistical study of the suspension is feasible and it is assumed that
the particles as well as the fluid phase constitute a continuum. Finally, we suppose that the particles
have all the same diameter and that the volume forces, except the gravity and the Archimedes force,
are negligible.

PART 1. EQUATION OF MOTION FOR THE PARTICLES
AND LINEAR ANALYSIS OF VELOCITIES FOR
SMALL OSCILLATING PERTURBATIONS

Let us define a kinetic relaxation time as being the ratio between the particle momentum in
the fluid frame and the modulus of the fluid—particle interaction force: f, (Lupoglazoff 1989).

(1]

where m, is the mass of the particle.
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Thus, if 7, is large compared to the characteristic time T of the fluid motion, then the average
motion of the dispersed phase is slightly influenced by the local conditions of the flow (vortices,
vibrations, etc.). But if 7y is much smaller than T, then the particles cloud motion follows perfectly
the fluid flow.

In a monodisperse suspension, the simplified motion equation, without body forces, is:

%%=%—%
dr T

where the d,( )/d¢ term denotes the material time derivative following the moving sphere with
the velocity v,: d,( )/df =0( )/0t +v,- grad ( ). Some more complete expressions, valid for low
Reynolds number, take into account other effects and the final equation for the momentum
interaction force takes the form (Tchen 1947; Corrsin & Lumley 1956; Hinze 1975; Clift et al. 1978;
Maxey & Riley 1983):

(2]

v

d v dv.  dv
(@) (b)

dyy, d, vp>

\de  dr
—4nrigrad (p)+ 6ri/mp sﬂf <——————
’ ® 0 Jt—=t

© (d) (e)

the letters (a)—(e) referring to the different terms of the second member.

As mentioned above, the particle does not rotate. Equation [3] does not contain any inter-
particular pressure term since all particles interactions are neglected. Note that more sophisticated
expressions contain other forces, such as the Faxen term (Gatignol 1983) or take into account the
effect of compressible external flow on the added-mass term (Maxey & Riley 1983).

dr’ +5nrip.g [3]

Meaning of the different terms of [3]
First member: acceleration of the particle.

Second member:

(a) Stokes drag. For a spherical rigid particle of diameter d, if the density and the viscosity of
the fluid are constant and if the inertia forces are negligible compared to the viscosity forces, that
is to say: Re=dV,, /v <1, then the Stokes drag force is equal to:

f, = 6mur,(v,—v,) [4]

where p is the fluid dynamic viscosity, (g) and (p) are related respectively to the fluid and the
particles in the mixture.
The coefficient 1, previously introduced, has the following value:

2
2 ra
Ty :;pgs; [5]

where p,, is the specific mass density of the fluid.
Fortier (1967) shows that:

|inertia forces|

R
Stokes drag| < ¢/

If Re > 0.1 the inertia forces can no more be neglected. Moreover, if Re increases then the
unsteady and dissymmetric characters of the flow become important. When Re is very large, f, may
be written as a bounded expansion of increasing powers of Re.

The drag force for a spherical particle constituted of a fluid viscosity g, put inside a fluid of
viscosity y, is (Fortier 1967):

243y

fv = 4nralu| I’_T (vg - vp) with l/’ =W /.ul [6]
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For a liquid droplet in a gas: ¢y — oc: f, = 6mr,u, (v, — v,). And for a bubble in a liquid: y — 0:
f, = dnr, u, (v, — v,).

(b) Virtual mass effect. The force exerted by an incompressible perfect fluid at rest on a isolated
sphere moving with the unsteady velocity v, is:

d,v

F=~C%7tr§pg5%E [7a]

C is the added mass coefficient. For a spherical rigid and isolated particle: C = 1/2. This force

means that a virtual mass must be added to the particle. If the fluid velocity is v,, then the force
imparted by the fluid on the sphere is given by:

dv d v,
o - Clan, (0 - %) [7b]

A more complete theory shows that C is a second order tensor (Drew et al. 1979). If the flow
is locally isotropic C is a scalar. Other studies show that C depends on the particles concentration
and on the geometrical configuration of the suspension. Its value decreases if the number of
particles increases. For a random distribution of monodisperse particles, C = ¢/2 (Atkinson &
Kytomaa 1992). C seems to be independent on the Reynolds number and on the acceleration
number whose expression is:

|
dpvp _ dpvg

dr dr

Since we suppose that the net force exerted on the particle is a sum of several terms of different
and independent physical origins, [7b] may be used for the total force applied to one or several
particles. Some authors find some expressions which are sometimes a bit different. Drew et al.
(1979), saying that the virtual mass force must be objective, agree with the previous expression in
the case of a spherical droplet accelerated in a quiescent fluid. But they find a result with an opposite
sign for a spherical bubble moving in a liquid at rest. Nevertheless, we use the classical result of [3]
which is used by many authors.

(c) Pressure gradient. The pressure gradient is supposed to be uniform around the particle.
The resultant force is:

AC = V%el //(zraa)v with a = [8]

F:‘J‘ pndSz—J grad (p)dV = —grad (p) % nr} {9a]

s is the surface sphere, b its volume and n is the unit outward normal.
If we suppose, in first approximation, that the presence of the particles does not modify the
flow locally, then the pressure gradient can be derived from the momentum equation of the fluid:

d,v
!
where g is the gravity acceleration vector.
The local velocity of the fluid being v,, we have: d,()/dt =3()/ot +v,- grad ().

Thus:

d v
F=§nripgs< o —g) [9¢]

(d) Basset history term. Some complicated algebra (Maxey & Riley 1993) gives the following
expression:

(dpvg dpvp>
s ‘\de’ dr’
F=CHr;,/7tvpgSJ 2 dr’ [10]
0o Jr—=t
This term represents the history of the viscous effects on the particle. C,, = 6 when Re < | and
Ac <1 ([8)).
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(e) Weight of the particle.
Now, let us note:

, T
pps/pgszx and « =;pgs;’ [11]
x being the ratio of mass densities (t, =ty ). Then the particle motion equation is:

dv

xrig?ﬂg—vp%(d—g}%—%?) Ul f o g+ [ fd’ i

Projecting on the horizontal plane and admitting a one-dimensional motion, (vp =v,i, v, = v i, i
is a horizontal unit vector), the previous equation may be written:

d Uy d v,
dpvp_ T (d,v, dyv, v, dt Cdr
=g —”f”ﬁz(d—,"w d, RN e e S

To study the influence of the different terms of [3] on the partxcle motlon the velocities are
perturbed from their steady state value by some smal] amount. The steady state being indicated
by the subscript (0), the respective total velocities of the fluid and the particles are:

)dt [12a]

Dy = Uy + U, [13a]
Vp = Upo + Up [13b]

v, and v, are the velocities perturbations. Choosing a steady state at rest, it follows that:
Vo =0 and v,,=0.
At the first order approximation, [12b] becomes:

ovy v
v, wvy—v, 1 [fdv, v, lov, 3 [t ['\dt" aor
— = —l=-=F — | ——=tdr 14
FTER vl bt vl i P bl Ry [14]
Some small periodic perturbations are chosen in the form:
¢ = Vyexplior) [15a]
v, =V, exp(iwt) [15b]

(see also Hinze 1975, who represents v, and v, by a Fourier integral).

Since the flow is one-dimensional and incompressible, these terms are independent of the
position. For a compressible fluid, ¥, and V, are position dependent. It should be noted here that
[3] has been formulated for an incompressible fluid. Some authors have found semi-empirical
formulae to take into consideration the compressibility of the fluid. Nevertheless, these corrections
are not necessary for small perturbations (Kuentzmann 1973). So whether the fluid is compressible
or not, we may write:

V.
£ exp(iot’) de’

iogtV,=V,—V,+ ia)%(Vg = V) +iwtV,+3 /%7; exp(—iwt) iw j-o Vy—
(a) (b) (©) (d) [16]

The Basset history term must be time independent, its value is evaluated for ¢ rising to infinity.
Physically, it is equivalent to suppose that the oscillatory regime is established and to ignore the
establishment transient modes. With an appropriate variable change, the Fresnel integrals appear.
Finally, the ratio of the complex velocities is given by:

v, 1 +3iwt+30+ 1) or
Ve 14 (x4 Dot +31( + )Jwr
Writing z as the left hand side of this equation and F(y, w, t) as the right hand one, then:

[17a]

z =F(y, wt) = f(, wt,) (r, = 1) [17b]
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In the analysis, the integrated formula for the Basset force is used. A more simple method may
be used for the specific case of a sphere oscillating in translation in a fluid. This method, used by
Landau & Lifshitz (1971), leads to the expression of the force applied to the moving particle. It
is also necessary to take into consideration the component of the instantaneous pressure gradient
(Maxey & Riley 1983; Gatignol 1983; Atkinson & Kytomaa 1992). The complex velocities ratio
calculated with this total force, whose expression is valid for any time ¢, is identical to our result.
Thus the assumption of infinite time ¢, necessary in our treatment for the Basset history calculus,
is not restrictive.

When looking at the function F, it can be shown that if wz is different from zero, then the values
of the velocities are different and a phase-lag between those velocities appears. Let us study that
function. There are two limiting cases, corresponding to extreme values of wt:

w1 tends to zero

This situation occurs when w is very small or when the relaxation time decreases. In the first
case, the perturbation is very slow. In the second case, the particles get smaller and smaller. In
both cases, the particles follow perfectly the carrier fluid velocity, thus the suspension is in an
equilibrium state. In the next, the subscript (e) refers to this equilibrium state:

lim z =z, [18)

wr—0

wt approaches infinity

When o approaches infinity, the perturbation is so fast that there is not enough time for the
particles to react. For large relaxation times, the particles are very big or they may have a very
large mass density. This case can also occur when the fluid viscosity is very small since the fluid
slides over the particles without being able to drag them well. In all those examples, the particles
do not react to the velocities fluctuations of the fluid. Thus, the particles behave like an obstacle
placed in the flow. This second limiting case corresponds to a flow that is called “frozen”, indicated
by the subscript (o0):

lim z=1z, [(19]

W — oA

The function z is studied in the following section. Starting with only the drag force, then other
different terms are added.
(a) Stokes drag. When the term (a) is only present in the second member of [17a], it is
obtained:
|
= 20
1 + iywr [20a]
That is the equation of a circle, whose radius is 1/2 and centred in (x =1/2, y =0), x and y
being respectively the real and imaginary parts of the complex number z. The only half-circle,
corresponding to negative values of v, is described in the direct way for increasing values of wr
(figure 1).

)

ot =% wt=0

Im (2
<
<
l\)[—“
w

Re (2)

-1 -

Figure 1. - in the complex plane. Total force = Stokes drag.
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z.=1, z~1—iwty for wr <l [20b]
z,=0 [20c]
(b) Stokes drag and pressure gradient. For this case, the terms (a) and (¢) are present, the
following result is obtained:
I +iwt

z= T+ ivor p— [21a]

The representative curve is the upper-half circle for y smaller than unity and the lower half-circle
for y larger than unity. For ¥ = 1, one obtains the point (x = 1, y =0). The very great importance
of the pressure gradient for small values of y, that is to say for particles which are lighter than
the fluid, is observed. For y = 0, the curve is the vertical upper half-line. For increasing values of
¥, the half-circle of figure 1 is found again. Figure 2 shows the function F(x, wt) in the complex
plane for the following values of y:y =0, y =0.25, y =2.5, y — o. The point (x =1,y =0)
belongs to all the curves.

ze=1, z~1+4+iwt(l—y) for wr<l [21b]

z,=1/x [21¢]
z, is now y dependent.

(c) Stokes drag, pressure gradient and virtual mass. The only missing term is the Basset history
term (d):

1+3iot

=T G+ 1D [22]

The representative curves are still half-circles passing all by the point (x = 1, y = 0). The curves
have been plotted for the previous values of y (figure 3), they are now in a finite zone. The limiting
cases y = 1, giving the point (x =1,y =0) and y > o0, giving the lower half-circle whose radius
is equal to 1/2, centred in (x = 1/2, y = 0) are unchanged.

z.=1, z~14+iwt(l1—y) for wr<l [22b]
z,=3/2x +1) [22¢]

(d) The whole terms. The expression of z is ([17a]):

1+ 3iot + 33 + 1)/ot

1+ (y +Diwt + 2 + )/ or
x=0
T
x =0.25
3 ~ x =25
E <0 '
£ i 2 3
Re (2)
x =
-1 = -1 -
Figure 2. z in the complex plane. Total force = Stokes  Figure 3. z in the complex plane. Total force = Stokes
drag + pressure gradient. drag + pressure gradient + virtual mass effect.

UMF 21'1—C
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Figure 4. z in the complex plane. Total force = the whole terms.

The curves are no longer circles. The expression of the imaginary part of z shows that its sign
i1s opposite to the sign quantity of (x — 1). For y rising to infinity, y is negative and only the
half-circle y < 0 is valid. We observe a flatness of the different curves compared to the previous
cases (figure 4). The limit curve for y - oo is identical to the curves of figures 1, 2 and 3.

To study more precisely the Basset term, the z modulus and its argument (phase-lag between
v, and v,) have been plotted. Two cases have been distinguished. In the first one, we take all the
forces, in the second one we neglect the Basset force. These curves are plotted as a function of the
square root of the reduced angular frequency \/& (the most little power of wt in [23a]). From
figure 5, showing the ratio of the velocities moduli, one can see that the less heavy particles (xy < 1),
moving faster than the fluid, go slower when the Basset force is applied to the particles [figure 5(a)].
That is the inverse on a little zone corresponding to very small values of wt [figure 5(b)]. The
particles, which are heavier than the fluid (x > 1), move slower than it (|v,/vy| <1). Now, the
Basset term presence makes the particle velocity larger [figure 5(a)], except on a small range of low

4 —
(a)
1=0
x =0.25
- x=25
‘x-—m
1 1 i J
0 5 10 15 20
Vot

Figure 5(a). |v,/v,} as a function of \/wt. Without the Basset term (———): the whole terms (- —-).
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[v! /v

1.00

Var

Figure 5(b). |v,/v;] as a function of \/wr for very small values of \/u; Without the Basset term (—);
the whole terms (——-).

values of wz [figure 5(b)]. We note on figure 6 that the phase-lag between v, and v is positive when
the particles are lighter than the fluid and negative in the inverse case. The Basset term first reduces
the phase-lag intensity and makes it larger after a certain frequency depending on y.

z=1, z~14+iwt(l—y) for wr<l [23Db]
2. =3/CQx + 1) [23c]

The study of the limiting cases shows several things. If wrt tends to zero, then the function F is,
as planned, almost equal to unity and v, =v,. We have got the same result (except in case a) for
any o when y is equal to unity, since the two components have the same mass density.

For large values of wr, the particles move quicker than the fluid if they are lighter than it, slower
if they are heavier. That is not the case if the only force applied to the particles is the Stokes drag
force since z, is y independent (z, =0 and v, =0).

PART 2. PROPAGATION AND DAMPING OF AN ACOUSTICAL WAVE
IN A COMPRESSIBLE TWO-PHASE FLOW

During their propagation, the acoustical waves lose some energy. The causes of these losses
are multiple:

1—A geometrical damping, that is the case for the spherical waves.

2—The momentum exchanges associated with the viscosity of the fluid, the exchanges
associated to the thermal conductivity.

3—The molecular relaxation due to the non-equilibrium internal energy modes and the
chemical relaxation.
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Figure 6(a). Phase-lag between v} and v} as a function of \/w;. Without the Basset term (——); the whole
terms {(~ - —).
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Figure 6(b). Phase-lag between ¢, and v, as a function of /w7 for very small values of \/@;4 Without
the Basset term ( ). the whole terms (—--).
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If the fluid contains particles, then other sources of damping may appear:

4—The momentum relaxation of the particles. Indeed, the velocity difference between the two
phases involves the dissipation of energy at the surface and in the wake of the particle,
hence a decrease of the acoustical intensity.

5—The relaxation temperature: some temperature gradients, due to the propagation of the
acoustical wave, appear at the surface of the particle. Thus, important losses occur by
thermal diffusion.

6—Mass exchanges during evaporation, condensation or combustion of the droplets.

It should be noted that the damping in a turbulent flow is larger than the damping in the
laminar flow. Indeed, the acoustical waves are diffused by the velocity and the temperature
fluctuations (Candel 1980-1981). The effect of the particles surface tension is small for liquid or
solid particles, this effect is no more negligible for bubbles in a liquid. The magnitude of a plane
wave decreases with the distance x. The damping law is exponential: exp(—bx), b is the damping
coefficient.

There is no energy loss when an acoustical wave propagates in a one-phase flow, with no
molecular or chemical relaxations and where viscous effects and thermoconduction are neglected.
Landau & Lifschitz (1971) express the average value of energy dissipation taking into account those
two last phenomena. The calculation supposes that the damping is small. In that way, the relative
decrease of magnitude is small on a distance about the wave-length: bc/w < 1. In this case, b may
be expressed in term of the velocity:

o [, 1 1
b= 2/7056‘3[(3” +C)+%<a—a’):|

(¢ is the gas bulk viscosity, x the thermal conductivity, C, and C, the specific heats of the gas at
constant volume and pressure respectively).

These effects are often negligible. For example, in the case of air at a temperature of 288.15 K,
we obtain: b = O(w? 10~ '%). Therefore, this dissipation is not taken into account in the following
section, where the assumptions of the first part are maintained. In addition, the following
assumptions are made:

—the gaseous phase is a thermally perfect gas (the thermal conductivity is negligible, C, and
C, are temperature independent).

—the only exchanges between the two phases are momentum and thermal exchanges (no mass
transfer). These exchanges occur in the immediate neighborhood of the particles.

The kinetic relaxation time 7, has been already defined in part one. From now on, we need to
introduce a thermal relaxation time to characterize the exchanges between the gas and the particles.
These exchanges vanish just in the case of particles whose surface is adiabatic. The thermal
relaxation time 7, is defined as being the ratio between the excess heat and the thermal flux between
the particle and the fluid:

0= m,C.(Tg—T,) 4]
v
(C. is the specific heat of the particle, T and T, the absolute temperatures of the gas and of the
particle respectively, g, is the thermal flux between the gas and the particle.)

If t, is large, compared to the characteristic time T of the fluid, then the particles temperature
is nearly independent on the fluid temperature, that is the case of inert particles. If 7, is much smaller
than T then the particles temperature is strongly dependent on the fluid temperature.

The radiative thermal exchanges are neglected to derive the expression of 7,. It is admitted that
the heat flux ¢, between the particle and its surface, to the temperature T, and the flux between
that surface and the gas g; may be written as: g,, = a,(T, — T,) and q,; = ag(T, — T¢). Since there
is no condensation or evaporation, we are allowed to write: g,, = g, = g,,. If the particle is not
thermally homogeneous, Markatos (1986) gives an expression for the coefficient a,, proportional
to the thermal conductivity of the particles. In this paper, we suppose that the particles temperature
is uniform (7, = T,). It is equivalent to say that the particles are very small or that their thermal
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diffusivity rises to infinity. We obtain the following result:
g, =Sh (T —T,), [25}

where S is the particle surface area and A, is the convection coefficient.

The determination of the thermal exchange coefficient A sets the same problem that we have
met for calculating the Stokes drag force in the momentum equation. The transitory effects
are neglected and just the local effects of the flow around the particle are taken into account.
The Nusselt number is:

Nu =k, d/x 26]

The Stokes assumption corresponds to a pure conduction transfer. For the case of a sphere, that
leads to the following result: Nu = 2. That is a reasonable assumption since the Reynolds number
is very small. Consequently:

g,=(Tg~T,)dr2n
o (Tg—T,)3x%

= —-——— i 27
m, Pust [27]
where p, is the specific density of the particles.
Finally:
C.r?
1, = cFa pps [28]

3x

The introduction of correlation factors (Mach number etc.) allows to take into account the
compressibility effects of the flow. As for 7, it is not necessary in the framework of this analysis
since the perturbations are very small. The thermal relaxation time may be written as a function
of 7,:

1, =3Prpr,, (29]
where Pr is the Prandtl number and f is the ratio of the specific heats of the two phases: C /C,.
Thus, in this particular case, the characteristic times have no independent values.

Let us write the continuity, the momentum and the energy equations for each phase (two fluids
model):

%

azG +div(pgve) =0 (30]
(continuity equation of the gas)
%-}—div(ppvp):O (31]

(continuity equation of the particles)
In these two equations, the mass densities are given by:
PG = Pas€ (32a]
Py =Pyl =€) [32b]

¢ is the volume fraction occupied by the gaseous phase.
Ovg . . v, . 3
. + povg - grad (vg) + grad (p) + Po +p,v, grad (v,) =0 [33]

(momentum equation of the mixture)

The momentum equation of the dispersed phase has been studied in the first part ([3]). The body
forces are ignored.



UNSTEADY FORCES ACTING ON A PARTICLE IN A SUSPENSION 39

e being the internal energy per unit mass, we have:

0 /2 — i
G _(_e_(%thL + pg Vg - grad (eg + vL/2)+ div(pvg)
d(e, + v} /2 —
+ P %M + pyv, - grad (e, + uf’/Z) =0 [34]

(conservation of energy of the mixture)

To—T

oT, .
—6t—p +v,-grad T, = . 2 (35]
(internal energy balance of the dispersed phase)
P =pcrTc=pserTs (36]

(state equation of the perfect gas of constant r = R/M, R is the universal gas constant:
R =8.3144 J/JK/mol and M is the gram molecular weight of the gas)

We take for r the value usually used for one-phase flow.

The steady state is characterized by the phases equilibrium: the velocity is equal to zero and the
temperature is uniform. The linearization is carried out by writing:

pG=pGo+pE] pp=ppo+p;>
To=15,+T T,=T,+T,

eg=¢€g,+ €6 e,= e, t+e,
Vg = Vg, + Vg Vo=V, TV,
p=po+p’ [37]
With:
Too=T, =T, [38a]
YGo = Vpo =0 [38b]
Around T,, e and e, may be written:
ec=C,Tg [39a]
e,=C.T, [39b]

Neglecting the second order terms, we obtain a seven equation linear system with the seven
unknown variables pg, p,, TG, T}, Vg, Vp, D

a ’
£+ po, div(vg) =0 [40a]
P 4 g divivy) =0 40b
61 ppo IV(VP) - [ ]
(continuity equations)
ovg — —. ov,
pGoa—tG +grad(l7 )+ppo—67p20 [4]]
(momentum equation)
deg de;, A
PGo 7 + Ppo ¥ + p,div(vg) =0 [42a]

oT, T4—T,
ZZp_2G 42
ot T, [42b]

(energy balance)
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P =r(pceTc+pcTs) [43]
(state equation)

We have to add [14] to this system. The entropy balance of the medium allows us to show that
the perturbation propagates isentropically in the limit of the first order approximation.

It is not easy to obtain a single equation with only one variable since the expression of the Basset
history term is complicated. The final result is a two equation system with the respective unknowns:
v; and vp:

o*vg oy L [(OV6\  ——(— [0V
ﬂa?+X ar —C0<A< PR >+rot rot ¥
2 B 14 XBy) (0, 0%
—%(XB + 1)(A(V,,) + oL (£t (v4)) +(—+@(FL—G+ X—a—tv§> ~0 [44]

A being the Laplacian, rof the rotational. X is equal to the ratio p,,/pgo-

Equation [14] is unchanged. The speed of sound ¢, in the gas alone is: ¢, = \/yrT,, y is the specific
heat ratio of gas: C,/C,.

For plane acoustical waves, the solutions where the quantities V; and V,, of [15a] and [15b] are
periodic and space-dependent functions are considered:

v, = vsi = vg expli(wt — K- 1) [45a]
v, =v/i=u,expli{wt — K- li [45b]

w is the angular frequency, K the wave-vector and r the position vector, vg, v, are independent
of the variables ¢ and r, i is the direction of propagation of the acoustical wave.

After projecting the two previous equations along the propagation direction of the wave, we
obtain the dispersion equation:

;K> 14 XBy +ior,
w? 14 XB +ior,

1+ Xz) [46]

where z is given by [17a]:

’
]

;—3 =z =F(y, wt) =f(1,01,) (47]

’

G
In this section, y is larger than 1 (liquid or solid particles in a gas). The influence on the thermal
transfer decreases when: y — 1, f —0, X — 0.

Let us express the complex wave-number K as a function of the angular frequency, the sound
velocity and damping:

k=2 _ip [48]
¢
Thus:
1 1 1 + XBy + iwrt,
el = Re| ST Ly 4
¢t w? ¢ e|:1+Xﬁ+iwr‘( +Xz) [49al

2 -1 m[l + XBy + iwr,

we ¢l 1+ XB + iwr, I+ XZ)] [490]

Re being the real part of the expression, Im its imaginary part.

If X becomes very small, then the particles concentration decreases (¢ — 1). The previous
formulae give us effectively the characteristic values of a one-phase flow (the wave velocity is equal
to ¢, and there is no damping).

First, let us study the dispersion equation in limiting cases. As mentioned above, 7, and 1, are
each dependent ([29]).
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wt, and w1, tend to zero

The particles follow perfectly the fluid velocity and the fluid temperature perturbations. As
mentioned before, the suspension is in an equilibrium state:

lim z =z, [50]
wty— 0
wt,—0

The bounded expansions of z and of the dispersion equation give the following results:

(a) Stokes drag. z ~ 1 — iwr,

1+ XB

T J U+ 1B +X) B1]
o T+ 00+ X[ 1 3Pr iy — 1)
T (1 + XB) (1 FX T 21+ xp)(1 +Xﬂy)> [52]

(b) Stokes drag and pressure gradient. z ~ 1 +iwt, (I — y)/y. The relation between ¢, and c, is
identical to the previous case.

wer (1+X)(1+Xﬁy)<1—l/x+ 3PrB¥(y —1) )
2¢, " 1+ XB) 1+X 20+ XB8)(1 + XBy)

b~

(53]

(c) Stokes drag, pressure gradient and virtual mass effect. z ~ 1 +iwt, (I — x)/x. The same
expressions as in the case b are found.

(d) The whole terms. z ~ I +iwt, (1 — x)/x. We find again the same expressions for the velocity
and the damping. Thus in every case, we arrive at:

ce=co\/ L+ XP [54]

1+ Xxpy)(1+X)

This velocity is frequency, fluid viscosity and particle size independent. Its value is also smaller
than the velocity in the gas alone since y > 1.
Furthermore:

2 2 2
wtvawppsra

Co Colt

ba [55]

For this limiting case, the damping coefficient is small since there is no relative motion between
the fluid and the particles. The Biot theory also predicts a damping proportional to @? at low
frequencies. Our results agree with Atkinson & Kytomaa (1992) since they obtain: baw?r?/u. Thus,
at low frequencies, the damping is inversely proportional to the temperature and to the gas velocity
(in this last case, the Prandtl number is supposed to be constant). For fixed values of y and X, the
damping increases with increasing p,. If X is very small, we obtain: b « X. But:

Xoa(l—e)e~1—¢, hence: bal—c¢ [56]

The damping is proportional to the particles concentration when this is very small.
Gibson & Toksoz (1989) and Allegra & Hawley (1972) observe the same behaviour.

wt, and wt, approach infinity

We have previously seen the meaning of wr, rising to infinity. For very large values of z,, the
particles are thermally inert and do not react to the temperature fluctuations of the gas. We write:

lim z=z_ [57]
wr,— X
Wt — xL
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(a) Stokes drag. z, =0
The high frequency limit for the sound speed is given by:

e, [58]

X (1 y—1
bw_corv <§+ 3Pr> 591

(b) Stokes drag and pressure gradient. z, = 1/y

¢ =co//(1+X/x) <c, [60]

X X/1y—1 y-1
b= f142(2X =2 61
©e,1, +x<2x+X+3Pr> [61]

Now, the wave velocity is smaller than ¢, and it depends on X/y.

For the damping factor, we find:

(c) Stokes drag, pressure gradient and virtual mass effect. z , = 3/2y + 1)

2y + 1
RN P (621
X [T+2y+3X% 2 — 1) y—1
b, = 63
© o T+21 <(2x+1)(1+2x+3X)+3Pr [63]
(d) The whole terms. z.,=3/2y+ 1)

_ -1
c~c [ 2y +1 <1+ 31 — DX ) f64]
3 +1+ 2y Jor,2x + D1+ 25 +3X)

bNX,/wrv 1+2x+3x< 31 - 1) ) (65]

ot 1+2y  \Qx+ D +27 +3X)

We state that in any case the velocity ¢, is almost equal to ¢,. Indeed, it must be kept in mind
that, for large values of the relaxation times, the particles behave like an obstacle placed in the
flow. That is why the sound speed is nearly equal to the velocity in a one-phase flow.

The damping is found to be proportional to 1/¢,t, when the Basset force is omitted. If this force
is taken into account, we have the following result:

12
«( ) (66
ColaPps

The Basset history term depends on the square root of the angular frequency, hence the
proportionality between the damping and this variable. This result is consistent with the Biot
theory. Note that Atkinson & Kytomaa (1992) find the same tendencies since they show that
b o (uw/r?)2. Thus, the behaviours for large and small frequencies are very different. Furthermore,
if the particles concentration is very small, this leads to the following linear dependence:

bal—¢ [671

GENERAL CASE

Now, let us study the wave behaviour for any values of wr, and wrt,. Let us take the
example of water droplets in air (fog) with: T, = 288.15K and p, = 1.013 x 10° Pa. The physical
characteristics of the gaseous phase are: C,=1012J/kg/K, y=1.401, pg =1.225kg/m’,
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u=178x10"kg/ms, x =2.51 x 10"?J/ms K and M =29 g/mol. For the dispersed phase, we
have: C,=4.1858 x 10° J/kg/K, p,, = 999.099 kg/m>. Thus, it comes the following values:

2= 815.59 ¢, = 340.087 m/s
v=1453x 105 m¥s r=286.703J/kg/K
Pr=10.7176 B =4.1361

1,= 12473 x 10735 1,=5.554 x 107%s thus: 7t,/r,=0.225

Let us see the different parameters influence on the velocity and on the damping coefficient.
The continuous curves correspond to the case where only the Stokes drag force is taken into
account (case number one) and the dashed lines are valid when the whole forces act on the particles
(case number two). The obtained curves when the virtual mass effect or the pressure gradient are
taken into account are almost the same as in case number one.

Influence of the product wt, (r,= 10> mand 1 —¢ = 5.0 x 107%)
We plot three types of curves:

—the ratio: c¢/c, as a function of log,,(wt,).

—the damping coefficient b as a function of log,,(w/w,), w, = 1.

—the reduced damping coefficient per unit wave-length: B = 2nbc?/wc as a function of
lOgIO ((,OTV).

The curve [figure 7(a)] shows that the velocity increases with increasing values of wrt,, further-
more: ¢, < ¢ < c,, <c,. If the Basset force acts on the particle, then the acoustical wave velocity
decreases. In the first case, ¢, = 256.23 m/s, ¢, = 340.09 m/s, thus: ¢ /c, = 1.33. Since, the term Xy
is very small, we have ¢, ~ ¢,. We recall here that the equilibrium velocity does not depend on
the studied combination of the forces acting on the suspension.

The reduced damping [figure 7(b)] first increases, reaches a maximum value B, for w,,, and then
decreases. We have: log,(w,7,) <0, so w, < 1/t,. In the first case B, =0.66, in the second case,
that value is smaller since B,, = 0.64. Besides a certain value of wr,, the reduced damping calculated
when all the forces apply to the particles is larger than the one obtained when just the Stokes drag
force is taken into account.

(a) e T

cle

| | | _
-2 -1 . 0 1 2

log), (@ 1y)

Figure 7(a). ¢/c, as a function of log,,(wt,). Stokes drag (——); the whole terms (- —-).
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0.8 —

(b)

0
-2 -1 0 1 2

log,, (o 1y)
Figure 7(b). B as a function of log,,(wt,). Stokes drag (——); the whole terms (——-).

1.2 —
(c)
0.9 |—
T
g 06 |
B~
03
| | J
0 1.5 3.0 45 6.0

log,, (®/wg)

Figure 7(c). b (m~") as a function of log,(w/w,). Stokes drag (——), the whole terms (-~ -).

The figure 7(c) shows the damping b as a function of log,,(w/w,). Besides a certain frequency,
the damping calculated in the second case is larger than the one obtained in case number one.
It reaches a limit value when the Basset term is overlooked but it tends to infinity in the inverse
case (b ~ ﬁ). This different behaviour does not appear when the reduced damping is plotted.

Influence of the particles concentration (r,= 10"’ m and w = 1000 rad|/s)

The velocity decreases with 1 — ¢ [figure 7(d)]. The damping increases for increasing values of
the particles concentration [figure 7(e)]. We remark that the velocity is smaller when the Basset
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400 — (g)

300

200

¢ (ms)

100 |-

! | I J
0 0.05 0.1 0.15 0.2

l1-¢
Figure 7(d). ¢ (ms~') as a function of 1 —¢. Stokes drag (——); the whole terms (~~--).

20 — (e)

b(m™")
=
—
AY
\
\

l 1 1 |
0 0.0625 0.125 0.1875 0.25

1 -¢
Figure 7(¢). 5 (m~!') as a function of I —e¢. Stokes drag (——); the whole terms (- —-).

term is taken into consideration. For this given angular frequency, the Basset term reduces the
damping. Those last results are predictable from figure 7.

Influence of particles radius (1 —c¢ = 5 x 107 and w = 1000 rad|s)

As was expected from the study of the velocity as a function of wr,, the velocity increases from c,
to ¢, and the Basset term involves a decrease of its value [figure 7(f)]. For the damping [figure 7(g)],
we observe a non-monotonic behaviour. The damping first increases quickly and then decreases
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360 —
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g 300
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270
240 L L |
0 1.33x 107> 2.66 x 1077 4x107°
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Figure 7(f). ¢ (ms™') as a function of r, (m). Stokes drag (——); the whole terms (- - -).
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Figure 7(g). & (m~") as a function of r, (m). Stokes drag (——); the whole terms (- - -).
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0.8 —
(a)
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0.2

1 | 0 ! |
-3.0 -1.5 [ I.5 3.0

log,, (@ T,)

Figure 8(a). Thermally inert particles: ,/t, = 100, B as a function of log(wr,).

1.50 —
(b)

1.25

QIJ
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1.00 —

L 1 0.75 ’ |
-3.0 -5 0 1.5 3.0
log, (@ 1,)

Figure 8(b). Thermally inert particles: t,/t, = 100, ¢/c, as a function of log,,(wz,).
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Figure 9(a). Particles in a rarefied gas or easily deformable particles: 7,/t, = 1/100, B as a function of
logg(wr1,).
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L ! 0.75 ‘
23,0 -5 0 1.5 3.0

log, (@ Ty)

Figure 9(b). Particles in a rarefied gas or easily deformable particles: t,/t, = 1/100, ¢/c, as a function of
log,y(at,).
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after having reached a maximum in r =r,. It is shown that:

9 /2
o =< - ) [68]
2wpy,

Urick (1948) gives an explanation for this phenomenon. He shows that the damping coefficient
is proportional to the celerities ratio:

(UG - Z)p )2

2
g

ba (691

The sign “——"" indicates the mean temporal value of the concerned quantity. If the particles
grow bigger, they move more difficultly and (v —v,)’ increases since v, decreases. Thus, the
damping increases. But when the radius increases, the total surface of the particles decreases making
the damping smaller (the particles concentration being kept constant).

For small values of the radius, the damping in case number one is larger than the one calculated
in case number two, this behaviour reverses when the radius increases.

Influence of the ratio 1,/t,

To obtain [29], we suppose that the particles are very small or that their thermal diffusivity is
infinite. For gases, the Prandtl number is nearly equal to unity. Furthermore, in the most usual
cases, the f§ order of magnitude is also one. Then 7, and 1, have approximately the same value:
7,/7, = O(1). If the thermal diffusivity of the particle is small or if the particle is big, [29] is no longer
valid since the temperature is no longer uniform in the sphere. For a particle which is very thermally
inert, we may write: 7,/7, <€ 1.

The inverse case: 7,/7, > 1, is more difficult to realize. Indeed, the case of a particle whose thermal
diffusivity is infinite has been studied, so we must act on 7,. We should find a kinetic relaxation
time which is larger than the one expected in the Stokes theory. It must be kept in mind that this
theory is only applicable for very small particles’ Reynolds numbers, the particles being spherical,
rigid and perfectly smooth. If the roughness of the particle is large, then it follows the fluid motion
easily. On the other hand, if the particle is made of a material which is not very dense or not very
viscous, then internal movements occur inside the particle. This transfer momentum is not used
to carry the particle away, thus t, increases. This example corresponds to easily deformable
particles. Particles moving in a rarefied gas also have a large kinetic relaxation time since the fluid
slips on the particle surface. In that way, the spheres have difficulty in following the fluid motion.
Acting on the particle radius to obtain really different relaxation times is more delicate since 1, and
7, are both proportional to the radius. Let us study two cases taking different values for the ratio
of the relaxation times.

Thermally inert particles: t,/t, = 100

The reduced damping curve of the acoustical wave has two distinct maxima: one for the thermal
transfer w,, = 1/1: B, =0.23, one for the momentum transfer w,, = 1/1,: B,, = 0.64. Thus the
maximum reduced damping for the momentum transfer is larger than the one obtained for the
thermal transfer. The sound velocity always increases with increasing values of wt,. A plateau
appears on the curve on an area next to w,, (figure 8).

Particles in a rarefied gas or easily deformable particles: v, /v, = 1/100

The remarks are identical to the previous case. The first maximum verifies w,,, = 1/7,: B,,, = 0.72,
this damping is due to the momentum transfer. For the second one, we have: o, = 1/1,: B, = 0.12.
Thus, the magnitude of the first maximum is larger than the magnitude of the thermal transfer.

The sound speed increases with increasing values of wrt, and the celerities ratio curve has got a
plateau near w,,, (figure 9).

CONCLUSION

The first part of this study has shown that, in most of the cases, the unsteady terms are not
negligible. They may be ignored when the particles are much denser than the fluid.

UMF 211D



50 E. DODEMAND et dl.

The influence of the Basset term is important for intermediate values of the reduced angular
frequency wt. It becomes negligible for small or large values of this quantity. The Basset term
influence also decreases when the ratio of the mass densities y becomes large. For small y the history
term becomes really important. That is the case of smail bubbles in a liquid. Such a case, y — 0,
can hardly be observed in a gas.

The limitations of the method must be pointed out since the perturbations have been linearized.
To get further in the study, we should treat concrete flow cases.

In the second part, we have studied the influences of the unsteady forces on the velocity and
the damping of an acoustical wave in a two-phase flow. As the former treatment, we have
made an analysis with small oscillating perturbations taking into account the compressibility of
the studied medium and the thermal exchanges between the two phases. Using the dispersion
equation, we show that: if y, the isentropical coeflicient of the gas, tends to unity, or f, ratio of
the specific heat of the particles and the gas, tends to zero, or X, ratio of the partial mass densities
of the particles and the gas, tends to zero, then the influence of the thermal relaxation decreases.
The last case corresponds to a one-phase fluid, thus the velocity of sound is ¢, and the damping
vanishes.

For small values of wrt, (equilibrium state), the velocity is smaller than the one obtained in
a one-phase flow. It is also independent of the different studied combinations of the forces.
This velocity does not depend on the sound frequency and the gas viscosity. The equilibrium
damping is proportional to w’p,ri/c,u, the dependence on w? agrees with the Biot theory. If
the particles concentration is small enough, then the damping is linearly proportional to this
concentration.

For large values of wrt,, the results are very different. The velocity ¢, is approximately equal
to ¢,. The damping depends on 1/(t.c,), if the Basset history term is neglected. It becomes
proportional to _/(w/(t,c?)) when this force is taken into consideration. The Biot theory also
indicates a proportionality to \/a_) If the particles concentration is small, then the damping is again
linearly proportional to the value.

In the general case, a complete study of the influence of all the parameters is difficult to realize.
Indeed, in our analysis, there are five nondimensional parameters: y, ¢, 8, 7, Pr. We have chosen
to study evolution tendencies for a fog at the standard temperature and pressure conditions. This
concrete case shows that the velocity increases with increasing values of wt, and decreases with
1 — €. Its value is always smaller than the velocity in a one-phase flow. The reduced damping, as
a function of wr,, first increases and then decreases, the greatest value is obtained for wt, ~ 1. The
variations, that occur around this particular point, explain the importance of particles presence in
certain phenomena, such as unstabilities in rocket engines. The damping increases with increasing
angular frequency and increasing particles concentration. The sound velocity increases with
increasing particles radius. The damping, as a function of the particles’ sizes, first increases, reaches
a maximum value and finally decreases.

In the studied cases, the two relaxation times have the same magnitude. If their values are very
different, we state the presence of two peaks on the reduced damping curve. One peak is due to
the momentum transfer, the other is due to the thermal transfer. The amplitude of the first one
is, in the present case, always larger than the amplitude of the second one. The velocity, as a
function of wrt,, always increases and we note now the presence of a plateau in the neighborhood
of wr, = 1.

As was expected from the first part, the influence of the unsteady terms is not important
in this case since y is large (liquid or solid particles in a gas). The Basset force plays an
important part in acoustics, effectively it makes the damping proportional to \/5 for
large angular frequencies. The sound dispersion is mainly determined by the viscous
interactions between the gas and the particles. Nevertheless, the effects of heat transfer are
significant and can not be neglected when the two relaxation times ratio is really different from
unity.

The present method is not an exhaustive study of the unsteady terms effects. Nevertheless it gives
us information and tendencies on a large range of frequencies. It might be useful for the numerician
or the researcher who, most often, overlook the unstationary terms in the particles momentum
equation.
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